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The results of theoretical and experimental study are presented for the question

of how the X-ray multiple diffraction in a silicon single crystal influences the

interference fringes of section topography for the 400 reflection in the Laue case.

Two different cases of multiple diffraction are discovered for zero and very small

values of the azimuthal angle for the sample in the form of a plate with the

surface normal to the 001 direction. The cases are seen on the same topogram

without rotation of the crystal. Accurate computer simulations of the section

topogram for the case of X-ray multiple diffraction are performed for the first

time. It is shown that the structure of interference fringes on the section

topogram in the region of multiple diffraction becomes more complicated. It has

a very sharp dependence on the azimuthal angle. The experiment is carried out

using a laboratory source under conditions of low resolution over the azimuthal

angle. Nevertheless, the characteristic inclination of the interference fringes on

the tails of the multiple diffraction region is easily seen. This phenomenon

corresponds completely to the computer simulations.

1. Introduction

The equations which describe the phenomenon of multiple

diffraction of the X-ray plane monochromatic wave on the

three-dimensional single-crystal lattice were derived by Ewald

in 1917 (Authier, 2005; Chang, 2004; Pinsker, 1978). However,

detailed study of the phenomenon itself both experimentally

and theoretically only became possible many years later.

Indeed, computer calculations are necessary for the accurate

solution of the equations, and single crystals of large thickness

have to be used in experiments.

In the first experimental works the Renninger experimental

setup was widely used (Renninger, 1937) in which one basi-

cally considers the diffraction of a nearly parallel and mono-

chromatic wave in the symmetric Bragg case when the

diffraction reciprocal-lattice vector is normal to the crystal

plate surface, and the beam is reflected from the thin sub-

surface layer. During rotation of the crystal in the surface

plane the polar angle, which is equal to the Bragg angle, stays

the same, and the condition of two-beam diffraction is

conserved.

At some values of the rotation angle (azimuthal angle) the

multiple diffraction conditions become fulfilled. This imme-

diately leads to a decrease in the registered reflection intensity

if it is large. If the reflection is forbidden, then initially its

intensity equals zero, but under the multiple diffraction

conditions one can observe the intensity peak. It is important

that such a scheme does not demand a high degree of

monochromaticity and collimation of the incident X-ray beam

for registering the fact of the phenomenon’s existence.
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Meanwhile, for the detailed study of peculiarities of angular

dependence of the plane-wave reflection, particularly for the

study of the effect of total reflection of the forbidden reflected

beam (Kon, 1988a,b), it is necessary to use the almost ideal

plane and monochromatic wave, that was achieved experi-

mentally only recently (Kazimirov & Kohn, 2010, 2011; Kohn

& Kazimirov, 2012).

In the Laue case, when all beams are transmitted through

the crystal and go out the crystal from the other surface, the

crystal thickness becomes important. The Borrmann effect is

known (Authier, 2005; Chang, 2004; Pinsker, 1978), when part

of the radiation is absorbed very slightly and can be registered

even for relatively thick crystals. Under the conditions of

multiple diffraction a decrease of the absorption coefficient �
by a factor 10�4 can occur (Afanas’ev & Kohn, 1977a) instead

of 0.04 in the two-beam case.

If the crystal plate thickness t is small so that �t< 1, then

the interference between two fields with different absorption

coefficients leads to oscillations with a small period on the

curve of the angular dependence of the reflection, and it is

difficult to study experimentally. Moreover, in this case the

diffraction vector is parallel to the crystal surface, and there-

fore a rotation of the crystal changes the crystal effective

thickness.

In the Laue case the method of section topography (Kato &

Lang, 1959) is widely used, when the incident beam is

restricted by the narrow slit located in front of the crystal. In

such a setup only the restricted area inside the Borrmann fan

(triangle) is illuminated in the crystal. In the middle of the

Borrmann fan the intensity oscillations have a large period.

Correspondingly, these fringes are easy to observe even for

relatively modest experimental conditions.

In a perfect single crystal the two-beam interference fringes

are independent of an azimuthal angle. The local crystal

structure defects, for example, individual dislocations, disturb

the normal picture of interference fringes and can be detected.

However, even in the perfect crystal a disturbance of the

fringe picture is possible, if the conditions for the multiple

diffraction arise at some values of the azimuthal angle.

Such a disturbance has been observed by Heyroth et al.

(1999) where the crystal was rotated at the necessary angle. In

this work the fringe disturbance was described by means of the

method of renormalization of the two-beam diffraction para-

meter. This renormalization arises in the area where the Bragg

conditions for the additional reflection are poorly fulfilled, i.e.

far from the multiple diffraction point in the angular plane.

The theory of such renormalization was first presented by

Høier & Marthinsen (1983). The accurate computer simula-

tions were absent.

We note that historically the first evidence of the influence

of multiple diffraction on Pendellösung fringes of X-ray

topography was presented by Hart & Lang (1961). However,

in this work a wedge-shaped crystal was used in the case of

plane-wave topography, i.e. without a narrow slit in front of

the crystal. A similar study was presented later in the work by

Høier & Aanestad (1981) where computer simulations were

performed for the thickness-dependent interference fringes.

It is shown in the present paper that the multiple diffraction

disturbance of the interference fringes of section topography

can be observed without a rotation of the crystal. Moreover, it

is possible to observe several different multiple diffraction

cases on the same topogram if the geometry of the experiment

and a structure of the crystal are chosen correctly.

Accurate computer simulations of the section topogram in

the multiple diffraction area are performed for the first time.

We start from the calculation of two-dimensional angular

dependence (polar and azimuthal angles) of selected reflected

beam intensity under the conditions of multiple diffraction.

Then we perform a Fourier transformation for the polar angle.

It corresponds to the case of a point source on the entrance

surface of the crystal, i.e. to the theory of two-wave spherical

wave diffraction by Kato (1961). In experiments such a case is

performed by means of a narrow slit in front of the crystal. The

width of the slit must be much less than the crystal thickness.

The method of calculation is presented in the next section.

In x3 the results of computer simulations are discussed. In x4

the experimental setup is described and the experimental

results are presented.

2. The method of computer simulations

Let us consider a silicon single crystal with the surface normal

to the direction n0 ¼ ð0; 0; 1Þ of the crystal lattice (the Z axis

of the Cartesian coordinate system). The section topogram is

registered for the reflection (4; 0; 0). We choose the direction

(1; 0; 0) as the X axis. Then the interference fringes are

oriented along the direction (0; 1; 0) (Y axis). If an angular

size of the source in the plane YZ is less than 10�4 rad, then

various segments along the interference fringes will be

correspondent to various values of the azimuthal angle

’ ¼ y=L, where L is the distance from the source to the

detector.

To realize a two-beam diffraction on the vector

h ¼ hð1; 0; 0Þ for the considered coordinate system, the inci-

dent wavevector has to have the coordinates k0 =

Kð� sin �; cos � sin ’; cos � cos ’Þ, where h ¼ 8�=a; a is the

crystal lattice constant, K ¼ 2�=�, � is the radiation wave-

length, sin � ¼ h=2K ¼ 2�=a. In our case the angle � is equal

to the Bragg angle for the reflection (4; 0; 0).

The geometrical task of searching for additional reflections

of multi-wave cases consists of testing all reciprocal-lattice

vectors with the Miller indices (n1; n2; n3) for a fulfilment of

the Bragg condition for the given direction of the incident

wave. This condition can be written as:

� ¼ ðS2
x þ S2

y þ S2
z � 1Þ< 10�5;

Sx ¼ � sin � þ An1; Sy ¼ cos � sin ’þ An2;

Sz ¼ cos � cos ’þ An3 ð1Þ

where A ¼ �=a, n1, n2, n3 are integer values. For the silicon

crystal it is necessary to consider only even–even or odd–odd

combinations.

It is easy to see that the vector (4; 0; 0) satisfies the condi-

tion for any value of wavelength and any value of the angle ’.

520 Kohn and Smirnova � Multiple diffraction in section topography Acta Cryst. (2015). A71, 519–525

research papers



If ’ = 0, then the vectors (2; 2; 0), (2;�2; 0) satisfy the

condition for any values of wavelength too. This case is called

a systematic multiple diffraction because all reciprocal-lattice

vectors lie in the same plane.

Thus, under the considered conditions we have to obtain the

four-wave case at the centre of the section topogram where

one has to see a disturbance of the interference fringes of the

two-beam case. It is of interest to search other multiple

diffraction configurations which are realized at relatively small

values of the azimuthal angle ’ for a given wavelength value.

We have found that for Mo K� radiation (� = 0.07093 nm) and

for the angle ’ which is near to ’0 = 4.938 �10�3 rad the four-

wave case is realized with the additional reflections

ð�1;�3;�1Þ and ð5;�3;�1Þ.

It is evident that for the angle ’ which is near to ’0 =�4.938

� 10�3 the four-wave case with the additional reflections

ð�1; 3;�1Þ and ð5; 3;�1Þ is also realized in accordance with

the crystal symmetry. These three cases of multiple diffraction

were observed in the experiment for the crystal thickness t =

1013 mm. The results of the experiment are presented in x4.

The accuracy of the experiment is not high. Nevertheless, a

disturbance of the interference fringes is clearly seen.

It is of interest to study a disturbance of the interference

fringes by means of computer simulations for the ideal case

when a slit width is infinitely small (much less than the crystal

thickness t), and the distance from the source to the detector is

infinitely long. We note that in the cases mentioned above a

pure Laue case of diffraction is realized when all diffracted

beams go out the crystal through the other surface. The

section topograms are calculated by means of Fourier trans-

formation over the polar angle � after calculation of the two-

dimensional angular dependence on the plane (�, ’). As a

result, we obtain a map of the intensity distribution of the

(4; 0; 0) reflection on the plane (x, ’). A correspondence to the

real section topogram on the plane (x, y) is easily obtained

through the relation y ¼ L’.

This relation is valid in the geometrical optics approxima-

tion for very long distance L. In the real laboratory experi-

ment the slit and the source have a finite size; therefore the

picture is smoothed over the slit size and the angular source

size. On the other hand, if the distance L < 10 Lf, where

Lf / t=�0 is the distance of diffraction focusing (Afanas’ev &

Kon, 1977b,c), then a slight change of the experimental picture

can arise compared to the angular theoretical dependence of

intensity, as was shown in the work of Kohn & Toneyan (1986).

Here �0 ’ 3� 10�6 is the diffraction parameter [see equation

(3)].

We use the method of calculation of the angular depen-

dence of multiple diffraction in the Laue case which was first

described in the work of Kon (1976a,b). If the plane wave with

the wavevector k0 is incident on the crystal, then it is refracted

inside the crystal, and the wavevector becomes k0 þ "n0=2.

Because of diffraction of the wave on atomic planes of the

crystal the additional waves arise with the wavevectors

km þ "n0=2, where km ¼ k0 þ hm; hm is the mth reciprocal-

lattice vector of the considered configuration which satisfies

the Bragg condition k2
m ¼ k2

0.

The electric field vector amplitude for the plane wave of the

index m has two components in the plane normal to km. Let us

denote these components by the index s; then the scalar

amplitudes are ��1=2
m Ems. Here the parameter �m ¼ ðkmn0Þ is

used for convenience. The Maxwell equation for the total

electric field inside the crystal is transformed to the set of

equations for each component Ems.

This set of equations can be written as an eigenvalue

problem,

P
ns0

Gss0

mnEns0 ¼ "Ems; ð2Þ

for the scattering matrix G which has the form

Gss0

mn ¼ �
K�m

�m

	mn	ss0 þ
K

ð�m�nÞ
1=2
�m�nðemsens0 Þ ð3Þ

where the parameters �m ¼ ðk
2
m � k2

0Þ=K2 depend on the

angles � and ’. The diffraction parameters �m are the complex

values. They describe the amplitude of the kinematical scat-

tering by the unit volume of the crystal. They were calculated

using a program presented in the work of Kohn (2006a,b). The

unit vectors of polarizations ems can be chosen to be arbitrary

[for more details see Kon (1976a,b)].

The matrix G takes into account both the elastic scattering

(the real part of the matrix G0) and the absorption (the

imaginary part of the matrix G00). In the Laue case the

elements of the matrix G00 are always much less than the

elements of the matrix G0, which allows one to take them into

account by means of the perturbation theory. In such an

approach the eigenvalue problem is solved only for the real

part that saves computer time. As a result we obtain 2N eigen

solutions where N is the number of waves of multiple

diffraction. Then the absorption coefficients are calculated by

means of the formula

�j ¼ "
00
j ¼

P
ms;ns0

EðjÞmsðG
00Þ

ss0

mnE
ðjÞ
ns0 ð4Þ

where the index j is used for various eigen solutions.

The total electric field of X-ray radiation is a superposition

of all eigen solutions, each of them having a weight �jðpÞ which

is calculated from the boundary conditions and depends on

the incident wave polarization index p. In the Laue case the

boundary conditions are related only to the entrance surface

and have the form

P
j

�jðpÞE
ðjÞ
ms ¼ ð�0IeÞ

1=2	m0	sp ð5Þ

where Ie is the intensity of the incident wave.

Due to orthonormality of the eigen solutions the set of

equations (5) can be easily solved, and the result is

�jðpÞ ¼ ð�0IeÞ
1=2E

ðjÞ
0p. Finally the reflection amplitude from the

incident wave of the polarization p to the reflected wave of

index m and the polarization s is equal to

Rðp;sÞm ð�; ’Þ ¼
P

j

E
ðjÞ
0pEðjÞms expði"jtÞ ð6Þ

where t is the crystal thickness.
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For the given reflection we have four complex values which

depend on the angles � and ’. If the incident radiation is the

plane unpolarized wave, then for the calculation of the mth

reflection coefficient it is sufficient to make a sum of square

modulus of four values and multiply it by the factor 0.5 which

is the weight of the various polarizations of the incident wave.

In our case of section topography one more step is neces-

sary, namely, the Fourier transformation for the variable

q ¼ K�. So we need to calculate the four new values:

Uðp;sÞm ðx; ’Þ ¼

Z
dq

2�
Rðp;sÞm ðq; ’Þ expðiqxÞ: ð7Þ

This transformation is equivalent to the spherical wave theory

of Kato (1961). We note that if the distance Ls between the slit

and the detector is sufficiently long (Ls > 0:1Lf), then it is

necessary to use more advanced theory developed in the work

of Kon (1977a,b). The result is obtained as a half sum of

square modulus Uðp;sÞm .

3. The results of calculations

Fig. 1 shows the multiple diffraction (0; 0; 0; 2; 2; 0; 4; 0; 0;

2;�2; 0) area at the centre of the section topogram (near the

point ’0 ¼ 0) for the conditions discussed above, namely, the

silicon crystal plate of thickness t = 1013 mm with the surface

normal to the (0; 0; 1) direction, Mo K� radiation, (4; 0; 0)

reflection. The horizontal size of the picture is four times less

than the region of calculation and less than the base of the

Borrmann triangle which is equal to 2t sin �B = 533 mm.

The top panel shows a large region over the azimuthal angle

within the interval from �200 to 200 mrad. The contrast is

shown with a linear scale of grey levels for the relative

intensity logarithm, i.e. lnðI=I0Þ, within the interval from�11.4

to �9.4. Here I0 is the intensity in the free-space case, i.e.

without the slit and the crystal. The maximum is black, the

minimum is white which is correspondent to the photoplate as

a detector.

One can see that for large deviations of azimuthal angle

from the multiple diffraction point the interference fringes are

fully correspondent to the two-beam case. They are described

by a sum of two functions (Afanas’ev & Kohn, 1971):

IsðxÞ ¼
Bs

4 cos �B

J0 Bs½ðt sin �BÞ
2
� x2
�

� �����
����

2

expð��tÞ ð8Þ

where Bs ¼ K�hCsð2 sin �BÞ
�1, � ¼ K�000 is a linear absorption

coefficient, J0ðzÞ is the Bessel function of zero order, �h and �0

are the Fourier images of the crystal susceptibility for the

scattering on the reciprocal-lattice vector and the forward

scattering, respectively. The factor Cs has two values 0 and

cosð2�BÞ for the two polarization states.

One can see that a sum of two pictures with different

periods of oscillations leads to smoothing of some fringes

because regions of intensity maximum for one picture corre-

spond to regions of intensity minimum for another picture.

This is a peculiarity of the unpolarized laboratory source. With

decreasing distance to the multiple diffraction region the two-

beam interference fringes become inclined, and then the

picture becomes very complicated because new fringes appear

with smaller periods and four polarization states.

It is of interest that at the centre of the multiple diffraction

region the size of the Borrmann triangle becomes smaller and

some focusing of almost all modes of radiation takes place

with increasing intensity. Nevertheless, some modes are not

focused. They form a separate interference structure.

The bottom panel shows the multiple diffraction area with a

smaller step over the azimuthal angle. To observe this struc-
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Figure 1
Computer simulation of a section topogram for the 400 reflection near the
azimuthal angle ’0 = 0. The intensity logarithm is shown. The top panel
shows a large interval over ’ where the inclination of the interference
fringes of two-beam diffraction is clearly seen. The bottom panel shows
the multiple diffraction area itself with a higher resolution over the
azimuthal angle. The parameters are shown in the text.



ture experimentally one has to have very high resolution over

the azimuthal angle. For example, if the source size is equal to

20 mm, then for the resolution of 1 mrad it is necessary to have

a distance of 20 m. The effect of compressing the beam is

rather interesting. At present, it is difficult to propose some

simple nature of such compression, and an additional study is

necessary.

Fig. 2 shows the multiple diffraction (0; 0; 0; 4; 0; 0;

5;�3;�1; �1;�3;�1) area which arises first with increasing

the azimuthal angle (near the point ’0 = 4.938 � 10�3 rad).

Once again the top panel shows a large region over the

azimuthal angle within the interval from �400 to 400 mrad

counted from the ’0 value, and the bottom panel shows only

the multiple diffraction area with a smaller step. The contrast

of relative intensity logarithm is shown as in Fig. 1.

A peculiarity of this case is that both additional reciprocal-

lattice vectors lie from one side relative to the vector 4; 0; 0

at the y axis. Correspondingly, the disturbance of the inter-

ference fringes is asymmetrical. For positive deviations

over the azimuthal angle the fringe period increases, for

negative deviations it decreases, and some fringes become

semicircular.

The bottom panel allows one to understand that compres-

sing the beam in this case takes place only for part of the

radiation. Simultaneously new modes of the field appear for

which the fringes have a smaller period without compressing

the beam. It is of interest that with high resolution over the

azimuthal angle the horizontal period of interference fringes

can be experimentally registered because it is more than

10 mm. This period has to be compared with the slit size in

front of the crystal, but not the source size.

4. The experimental results

The experimental setup is shown in Fig. 3. The laboratory

source of Mo K� unpolarized radiation was used. The source

focus sizes were 28 � 30 mm. The topograms were obtained

with a Lang camera model A-3. The first slit has a size 400 mm

and is located at a distance 55 mm from the source. The second

slit has a size within the interval from 10 to 15 mm and is

located at a distance 260 mm from the first slit. The sample was

fixed at a distance 40 mm from the second slit. The distance

from the sample to the photoplate was 15 mm. The third slit of

size near to 1 mm was located directly in front of the photo-

plate. The size of the slit was almost two times larger than the

base of the Borrmann triangle for the crystal of thickness

1013 mm. We note that the second slit restricts the beam very

strongly, and it can be considered as the secondary source. The

degree of coherence of such a secondary source can be char-

acterized by the size of spatial coherence, see, for example,

Born & Wolf (1999). This size is determined by the formula

Ltc ¼ �Z=ws, where � is the radiation wavelength, Z is the

distance from the source to the slit, ws is the source transverse

size. For the above experimental parameters we calculate Ltc =

0.8 mm which is much less than the size of the slit. So the slit

can be considered as an incoherent source. The other reason
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Figure 2
Computer simulation of a section topogram for the 400 reflection near the
azimuthal angle ’0 = 4.9 � 10�3 rad. The intensity logarithm is shown.
The top panel shows a large interval over ’ where the inclination of the
interference fringes of two-beam diffraction is clearly seen. The bottom
panel shows the multiple diffraction area itself with a higher resolution
over the azimuthal angle. The parameters are shown in the text.

Figure 3
The experimental setup. The distances and sizes are described in the text.



for incoherence is the relative

energy bandwidth (�E=E = 3 �

10�4) of the radiation. Various

values of wavelength are inco-

herent. The pictures for these

are shifted relative to the slit.

Therefore it is a good approx-

imation to calculate the picture

for the monochromatic source,

and then to average the intensity

distribution over the slit size.

As for the coordinate along

the slit, effective averaging of

the angular dependence has to

be done over the angular source

size �’. The latter is calculated as a ratio of the source size

and the total distance from the source to the photoplate. In

our case �’ = 8� 10�5. Fig. 4 shows the experimental pictures

of the interference fringes of the 4; 0; 0 diffraction beam. The

topogram width (along the X axis) is equal to the base of the

Borrmann triangle 533 mm increased additionally by the slit

size. The topogram length (along the Y axis) is more than

6 mm. The topogram shows all three cases of multiple

diffraction discussed in the previous section. Various segments

of the topogram along the Y axis correspond to various values

of the azimuthal angle ’.

The panel (a) of the figure shows a segment for such a value

of ’ where the effect of multiple diffraction is absent. Almost

all the parts of the topogram seem like this segment. However,

in some parts the interference fringes become different. First,

this takes place at the centre of the topogram where ’ = 0. This

fragment is shown in the panel (b). Here the four-wave (0; 0; 0;

2; 2; 0; 4; 0; 0; 2;�2; 0) diffraction takes place. The panel (c)

corresponds to the four-wave (0; 0; 0; 4; 0; 0; 5;�3;�1;

�1;�3;�1) diffraction which takes place at ’ near ’0 = 4.9 �

10�3 rad. We note that the vertical size of the pictures

(533 mm) corresponds to the interval of ’ values as 1.5 �

10�3 rad.

Despite the very low resolution of the experimental topo-

gram over the azimuthal angle, the fragment (c) shows clearly

decreasing distance between light strips at the bottom part

and increasing distance at the top part. As for the fragment

(b), in this case the decrease in the distance takes place in

both the top and bottom parts; therefore the effect is not

clearly seen, but one can see the fact of fringe disturbance.

The main problem of laboratory investigations of multiple

diffraction by means of section topography consists of

a low resolution over the azimuthal angle ’. On the other

hand, the results of computer simulations show that the

multiple diffraction area of the section topogram has a

very complicated structure which is difficult to interpret

within the simple theoretical model. The simplest property

of multiple diffraction is a renormalization of the two-

beam diffraction parameters by means of double diffraction

through the additional reflections on the periphery of

the multiple diffraction area which leads to the fringe incli-

nation.

5. Conclusion

The method of computer simulation of the section topogram

for a single crystal under conditions of multiple diffraction is

developed in the Laue case. In a silicon single crystal with the

surface normal to one of the main axes, the cases of multiple

diffraction are found for very small values of azimuthal angle.

They can be observed experimentally on the same topogram,

i.e. without a rotation of the crystal. The results of calculations

show that the multiple diffraction is seen on the section

topogram in two different ways. First, in the centre of the

multiple diffraction area the structure of interference fringes

becomes very complicated, and a dependence on the azimu-

thal angle becomes very sharp. Secondly, on the periphery of

the multiple diffraction area a weak change of the two-beam

diffraction parameters leads to the characteristic inclination of

the interference fringes.

The second phenomenon can be observed even in the

experiment using a laboratory source of X-ray radiation under

the conditions of low resolution over the azimuthal angle. The

specific results are presented only for the reflection 400.

However the effect of two-beam interference fringe distur-

bance for small values of the azimuthal angle was observed for

the 220 and 800 reflections. The method of searching the

additional reflections for any value of the azimuthal angle and

any basic reflection is developed. The results of computer

simulations are correspondent to our experimental topograms.

References

Afanas’ev, A. M. & Kohn, V. G. (1971). Acta Cryst. A27, 421–430.
Afanas’ev, A. M. & Kohn, V. G. (1977a). Acta Cryst. A33, 178–184.
Afanas’ev, A. M. & Kon, V. G. (1977b). Fiz. Tverd. Tela (Leningrad),

19, 1775–1783.
Afanas’ev, A. M. & Kon, V. G. (1977c). Sov. Phys. Solid State, 19,

1035–1040.
Authier, A. (2005). Dynamical Theory of X-ray Diffraction, 3rd ed.

Oxford University Press.
Born, M. & Wolf, E. (1999). Principles of Optics, 7th ed. Cambridge

University Press.
Chang, S.-L. (2004). X-ray Multiple-Wave Diffraction: Theory and

Application. Springer Series in Solid-State Sciences. Berlin:
Springer.

Hart, M. & Lang, A. R. (1961). Phys. Rev. Lett. 7, 120–121.

524 Kohn and Smirnova � Multiple diffraction in section topography Acta Cryst. (2015). A71, 519–525

research papers

Figure 4
Fragments of the experimental section topogram. (a) Two-beam 400 diffraction in the silicon single crystal of
thickness 1013 mm. (b) The multiple diffraction area near the azimuthal angle ’0 = 0. (c) The multiple
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